
Points to Remember		
Balanced chemical equation	A balanced chemical equation is the simplified representation of a chemical reaction, which describes the chemical composition, physical state of the reactants and the products, and the reaction conditions.	
Classification based on the nature of rearrangement of atoms		
Combination / synthesis / composition reaction	It is a reaction in which two or more reactants combine to form a compound. 1. Element + Element \rightarrow Compound $Ex: H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)}$ 2. Compound + Element \rightarrow Compound $Ex: PCl_{3(l)} + Cl_{2(g)} \rightarrow PCl_{5(s)}$ 3. Compound + Compound \rightarrow Compound. $Ex: SiO_{2(s)} + CaO_{(s)} \rightarrow CaSiO_{3(s)}$	
Decomposition reactions	It is the reaction in which a single compound splits into two or more simpler substances under suitable conditions. Thermal decomposition / Thermolysis: Reactant is decomposed by heat.	
	$Ex: \ 2 \text{HgO}_{(s)} \xrightarrow{\text{heat}} 2 \text{Hg}_{(t)} + \text{O}_{2(g)}$ $Electrolytic \ decomposition: \text{Reactant is decomposed by electrical energy.}$ $Ex: \ 2 \text{NaCl}_{(aq)} \xrightarrow{\text{electricity}} 2 \text{Na}_{(s)} + \text{Cl}_{2(g)}$	
	<i>Photo decomposition/photolysis</i> : Reactant is decomposed by light energy. $Ex: \ 2AgBr_{(s)} \xrightarrow{light} \ 2Ag_{(s)} + Br_{2(g)}$	
Single displacement Reactions	It is the reaction between an element and a compound, where one of the elements of the compound-reactant is replaced by the element-reactant to form a new compound and an element. $Ex: \operatorname{Zn}_{(s)} + \operatorname{2HCl}_{(aq)} \longrightarrow \operatorname{ZnCl}_{2(aq)} + \operatorname{H}_{2(g)}$	
Double displacement reactions / Metathesis	Two compounds react by interchanging their ions. Precipitation reaction: Aqueous solution of two compounds react to form an insoluble compound and a soluble compound. Ex: $Pb(NO_3)_{2(aq)} + 2KI_{(aq)} \longrightarrow PbI_{2(s)} \downarrow +2KNO_{3(aq)}$ Neutralisation reaction: Acid react with the base to form a salt and water. Ex: $NaOH_{(aq)} + HCl_{(aq)} \longrightarrow NaCl_{(aq)} + H_2O_{(l)}$	
Combustion reaction	It is a reaction in which the reactant rapidly combines with oxygen to form one or more oxides and energy (heat). $Ex: C_3H_{8(g)} + 5O_{2(g)} \longrightarrow 3CO_{2(g)} + 4H_2O_{(g)} + Heat$	

Classification based on the direction of the reaction	
Reversible reaction	It is a reaction in which the products can be converted back to the reactants.
	$Ex: PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$
	Types: 1) Forward reaction 2) Backward reaction
Irreversible reaction	The reaction that cannot be reversed is called irreversible reaction.
	<i>i.e.</i> They take place only in the forward direction.
	$Ex: C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} + Heat$
Rate of a reaction	Rate of a reaction is the change in the amount or concentration of any one
	of the reactants or products per unit time.
	* Influencing factors: Nature of the reactant, Concentration of the reactant,
	Temperature, Pressure, Catalyst, Surface area of the reactant.
Catalyst	A catalyst is a substance, which increases the reaction rate without being
	consumed in the reaction.
Ionic product of water	The product of the concentration of the hydronium ion and the hydroxyl ion
	is called <i>'ionic product of water'</i> . Its denoted as 'K _W '. Its unit mol ² dm ⁻⁶ .
	$\mathbf{K}_{\mathbf{W}} = [H_3 O^+][OH^-](or) \ \mathbf{K}_{\mathbf{W}} = [H^+][OH^-]$
рН	pH is the negative logarithm of the hydrogen ion concentration. $\mathbf{pH} = -\mathbf{log_{10}[H^+]}$
	$pH < 7 \Rightarrow Acid$ $pH > 7 \Rightarrow Base$ $pH = 7 \Rightarrow Neutral$

